Modular testing environments

Foundations define and limit the structures we create; this is as true in Model-Based Design as it is in architecture.  With that in mind, I want to use this post to discuss the concept of modular testing environments (MTE).  First, I will point to an earlier blog post “Testing is software“, before I drill deeper into the concept of MTE.

What is a modular testing environment?

A modular testing environment consists of 5 parts

  1. Test manager:test manager provides the framework for running, evaluating and reporting on one or more test cases. Further, the test manager provides a single hook for the automation process.
  2. Test harnesses: a test harness is the software construct that “wraps” the unit under test.  Ideally, the test harness does not change the unit under test in any fashion; e.g. it allows ‘black box’ testing.
  3. Evaluation primitives: the evaluation primitives are a set of routines that are commonly used to evaluate the results of the test.  Evaluation primitives range from a simple comparison against an expected value to complex evaluations of a sequence of events.
  4. Reporting: there are two types of reports, human and machine readable.  The human readable reports are used as part of the qualification and review process.  Machine-readable reports are used for tracking of data across the project development.
  5. Data management: testing requires multiple types of data, inputs, outputs, parameters and expected results.

Why is a modular testing environment important?

Having helped hundreds of customers develop testing environments the 5 most common issues that I have encountered are

  1. Reinventing the wheel, wrong:  Even the simplest evaluation primitive can have unexpected complexities.  When people rewrite the same evaluation multiple times mistakes are bound to occur.
  2. Tell me what happened:  When tests are pulled together in an individual fashion it is common for there to be limited or inconsistent reporting methods.
  3. Fragile tests: A fragile test is one where if the inputs change in a significant fashion the test has to be completely rewritten.
  4. “Bob” has left the company:  Often tests are written by an individual and when that person leaves the information required to maintain those tests leaves with them.
  5. It takes too much time:  When engineers have to build up tests from scratch, versus assembling from components, it does take more time to create a test.  Hence, tests are not written.

Final thoughts

Verification and validation activities are central to any software development project, Model-Based Design or otherwise.  The easier you make the system to use the more your developers will embrace them.

Collecting feedback…

Please forgive the early post…

When developing a control system feedback is critical; in creating a company wide software proces feedback (from your employees) is even more importaint.  What is the best way to gather that information and what is the information that you should be collecting?

AAEAAQAAAAAAAAIUAAAAJDM0YTBmOTg1LTFlY2MtNGI0MS1iNWJiLTcwNWY5NmRmZWExNQ

What did your bug reports tell you?

Bug tracking systems serves as the “first pass” for information reference.  When developing the software process a category of “workflow issues” should be included in the tracking software.  These workflow bugs will show problems related to

  • Poor documentation: The primary way users learn about the Model-Based Design workflow is through the documentation.
  • Architecture interfaces: Poor interfaces, either for model or data integration will emerge as new design patters are exploreed by new groups.  The process adoption team must determine if the interface should be extended or a new interface defined for the group specific requirements.
  • Test failures:
    • Modeling guidelines: Failures in modeling guidelines will show where users have difficulty in conforming to modeling standards.
    • Regression tests failures: These can indicate an improperly defined regression test system.  During the inital development of the test environent it is common for there to be errors in the system.

bugReport

Direct feedback / viewing

At the one, two and six month marks groups new to the process should be brought in for a formal process review meeting.  During the meeting the following activities should take place.

  • Design reviews:  The models, tests and data managment files should be reviewed to ensure that best practices are followed.
  • Pain points: Request feedback from the teams to capture existing pain points.

Final thoughts

Collecting feedback from new teams is critical understanding where processes can be improved.  The development is as always an iterative process requiring input from teams outside the inital “core” team.

KPI for initial project…

What will and what were you measuring?

During the initial phase of the project, the key performance indicators (KPI) are, generally, not measured.  However, it is at this stage of the project when you start thinking about what you should measure and how you will measure it(1).

First a word of warning, metrics are useful but they rarely provide the full picture(2).  That being said there are metrics that can be monitored

Bugs found at stage X…

One of the benefits of a Model-Based Design approach is the ability to detect bugs earlier on in the development process.bugs However, one side effect is the observation “we find so many bugs when following an MBD process.(3)”  Hence the metric that should be tracked is the number and severity of bugs found at each stage of the development process.  To determine the impact of finding the bugs early in the development a multiplier can be applied to the cost of the bug…

cost = Severity * StageConstant

Test and requirements coverage

Model-Based Design allows users to track the coveragePolyspacerequirements and testing coverage through automated tools(4).  With respect to test coverage; there are two types of test coverage.  The first is requirements based test coverage; do tests exist to cover the requirements.  The second are formal metrics coverage such as MCDC coverage.

The objective with coverage tracking is to see a steady increase in the percentage coverage over the development cycle.

Integration and development time

The final “primary” metrics are the development and integration time.  The development time is straight forward, how long from receipt of requirements to final check in of a model that satisfies the requirements (and test cases).  The integration time is a bit more interesting.

In an ideal workflow for Model-Based Design, there is integrationHandsan integration model that is created at the start of the development cycle.  Individual developers check their models against that integration model to ensure that there are no conflicts.  Hence in an ideal flow, the integration time should be near zero.

However, since there will be changes as the project develops, the integration model will change and the systems engineer will need to validate those changes.  Like the bug detection finding integration issues is done further upstream in an MBD process.  Again the metric should use a weighted value based on the stage of where the integration issue is found.

Final thoughts

This post covered what can be measured, not how to measure them; this will be covered in future posts.  Additional metrics can be covered however take care in having too many metrics and frustrating those who are developing with a heavy “tracking debit”.

Footnotes

(1) For this post, I am assuming that you do not currently have metrics in place.  If you have existing metrics they can be adapted to the MBD environment.
(2)Trying to capture all activities in development can, in fact, be detrimental in that it takes away time from development.  Always try to automate metric collection and, when not possible, simplify the process of creating this data.
(3) I have gotten this comment on many engagements; people mistake finding bugs in a process for not having bugs in their earlier process.  While there will be new bugs due to adopting a new process it is rare that an old process did not have any issues.
(4) Setting up the automation tools is something that is done in future steps of the adoption.

Model-Based Design foundational concepts

In previous blog posts, I have gone into some depth on testing, architecture and data management for models.  With this post, I will cover how these three activities for the foundation of any Model-Based Design process.

Foundations and core competencies

At later stages in the adoption of Model-Based Design crawl-walk-run-fly-300x191
processes task-specific groups will emerge (development, verification, and systems.)  However, at the start of the Model-BAsed Design process users from all groups need to determine the “common language” that will be used to develop their project (1).

Architecture and data sure, but why testing?

The identification of architecture and data as foundational concepts is generally well understood.modelcentricgifslow  Combined they define how people will develop the model through interfaces and clear communication.  So why testing in the trinity?  It returns to the core concept of Model-Based Design that models are at the center of the development process.  To ensure that the model can be used consistently through the development process they need to be “locked down”(2) with test cases.

Driven by this objective, the testing environment is designed at the start of the development process.  The requirements of the test environment should be addressed within the architectural and data infrastructure.  The good news is that best practices for the three “legs”(2) of the MBD stool are already in the well defined; it is a matter of honing them to your specific project and environment.

Final thoughts

This post is not intended to be technical; rather it is to remind us as we develop new processes to start out with the “best path forward” from the start.  In the section about the validation project, I will discuss the next round of tools that are commonly adopted.

Footnotes

(1) I may start using this graphic as my tag for MBD adoption.  Crawl = investigate.  Walk = initial.  Run = validated.  Flying = optimizing.
(2) Tests cases are elaborated as the model is developed.  The “lock down” is achieved through the use of a continuous build and test server.
(3) The metaphor of a tripod or stool can be overused.  But, to push it one last time, this is your stepping stool to the next round of MBD tools and processes.  Build it well and it forms a strong foundation.

Bug tracking software

The first thing I need to clarify in this post is, what is and what is not a bug.

A software bug is an error, flaw, failure or fault in a
computer program or system that causes it to produce
an incorrect or unexpected result, or to behave in
unintended ways.

A software bug is not is

  • Incomplete features:  During the software development process features will be under development(1).  As long as the incomplete nature of the feature does not introduce errors it is not considered a bug.
  • Desired features: Frequently the scope of a software develop project will not allow all the desired features to be included in a release of the software.  Again, as long as the lack of the feature does not introduce errors it is not considered a bug.

Incomplete features should already be tracked in the project planning timeline.  Desired features should be incorporated into the requirements document for the next generation of the project.

Severity of bugs

Not all bugs are created equal; defining the sevBeetle-Poster-720x479erity of bugs is necessary for prioritizing the correction of the bugs.  There are two common metrics for determining severity.  Frequency, how often does the bug occur.  Impact, when the bug occurs what happens to the program.  The following lists provide examples of how frequency and impact could be defined(2).

Frequency:

  • Infrequent:  Happens in less than 1% of the executions of the program in the normal work tasks.
  • Common: Happens for 1 ~ 5% of users in the normal course of work.
  • Prevalent: Occurs for 10% of users in their normal course of work.

Impact: 

  • Low:  Bugs that are cosmetic flaws or provide unclear information to the user. The user should be able to recover from these bugs without affecting their work.
  • Medium: Bugs that provide incorrect data to the user and or significantly impact the performance of the process.
  • High: Bugs that crash the program or create a loss of data for the user.

Once the frequency and impact have been determined the ranking of the bug can be defined.

Low Medium High
Infrequent Advised  Recommended Required
Common Advised Required Required
Prevalent Recommended Required Required

The ranks serve as a guideline for prioritizing bug fixes; with required, the recommended and finally advised bugs being fixed in that order(3).

Bug fixing workflow

There are multiple commercially available tools for bug tracking.  A basic workflow should include the following tasks and events.

bugFix

  • Bug detection:  The bug is found either through use or captured in an existing test case
  • Entry into tracking system: Once detected the bug, with comments and reproduction steps, should be entered into the bug tracking system(4).
  • Assignment:  The bug is assigned to a software engineer for resolution
  • Creation of test / validation of solution: If a test case does not already exist for the bug it should be created.  The proposed solution to the bug should be run against both the new test case and the existing test cases to ensure that the fix did not introduce new errors.

Final thoughts

Bug tracking and resolution is a problem common to all software development workflows.  The process for resolving these issues is the same for Model-Based Development as in traditional C development environments.  The critical part of bug resolution, as in all development, is that the bugs are clearly defined in an actionable fashion so that the test and software engineers can under stand the problem and find a solution.

Footnotes

(1)Feature encapsulation will help prevent incomplete features impacting other sections of the project.  See the software architecture posts for more information.
(2)These partial definitions for frequency and impact; depending on the type of system being developed the error types and frequencies should be adjusted.
(3)The table providing rankings based on frequency and impact should be adjusted depending on the type of system under development.  Additionally the criticality of some systems with in the whole should be taking into account when assigning impact.
(4)Entering bugs into the tracking system is critical for creating development metrics.  Without the entry there is no method for determining the efficiency of the overall process.

What is a control algorithm?

The question, dreaded or loved that all engineers face is, “Tell me, what do you do?” As a controls engineer, I fall back to the following example.

Me: Imagine you are driving down the highway and you want to pass someone.  What do you do?
Imaginary person: Well I would shift over to the left lane and speed up.
Me: And if they started to go faster as you tried to pass them?
Imaginary person: Well I guess I would speed up some more.

Me: And after you pass them, what then?
Imaginary person:  Well I would move back over and slow back to my initial speed(1).

This simple example serves as a starting point for explaining the fundamentals of control algorithms.

  • The “objective”:  This is the thing we want to control.  In this example, it is the speed of our vehicle.passing-right
  • The input: How we affect the thing we want to control; for an automobile it is by depressing the acceleration pedal that the vehicle is commanded to go faster.
  • The feedback: The measurement of how close we are to our desired objective; e.g. are we going fast enough to pass the other car(2).

Everything is Newton’s method…

From the starting point of the automobile example, we can explain that the goal of a control algorithm is to drive the difference between the desired and the actual values to zero.  We can expand the driving example to drive our point home.newtons-method-example-graph

  • Overshoot:  When you stamp on the gas and end up going 80 instead of the 75 you needed to pass…
  • Fault detection: (Manual drivers only) when you try to hit 80 but are still in 2nd gear…
  • Adaptive controls: You drive more carefully in downtown Boston(3) than on a rural highway…

Final thoughts

As you could tell, this post is intended to be more light-hearted; however, I do find that thinking about controls problems in a non-technical relatable fashion helps me understand what I am talking about.

“It begins as an idea,
it ends with math(4)

Footnotes

(1) We know this is an imaginary person since they said they slowed back down after passing.
(2)In this example we actually have an indirect measurement, are we passing the car not the actual speed of the vehicle.
(3) At least I hope you allow more space between drivers when moving about in a rush hour situation.
(4) Frequently, in presentations, I will say “in the end, it all comes down to the math.”  While this is true, it lacks the motivation that drives the derivatives.

Video Blog: Fault detection

This video blog looks at fault detection and error handling.  The included images of State Machines show templates for how I generally model fault detection algorithms.

In this first example there are two things to note:

  1. Debounce protection:  Returning from “move to fault” and “no fault.”  The signal needs to fall below the trigger signal – a delta to the signal.  This prevents “jitter” in the signal.  (Green circle.)
  2. Temporal logic:  The move to “in fault” only takes place after you have held the fault condition as true for a set period of time. (Orange circle and black circle.)

faultPattern

The next example is more complex; in this example, a single variable “engine temp” can result in two different error modes.  “High Temp” or “Critical High Temp.”  In reality, the pattern is a slight variation on the previous version however it shows how it can be expanded to more complex fault conditions.

criticalTemp

Model-Based Design and version control

In a previous post, I wrote about general best practices for version control.  In today’s posting, I am going to cover using version controls in the Model-Based Design workflow. Note for this blog post, I will be using generic terms for version control practices.

Derived and source objects

A derived object is any file that is generated from a source object or process.  Within a traditional C language development process this would include

  • .lib /.o / .exe
  • Coverage reports
  • Test results
  • Data files

Like a traditional text-based language approaches a Model-Based Design has both source and derived objects; in the case of Model-Based Design the design objects are one level of abstraction removed from the C source files (1).

automated-test-suite-generation-for-timecontinuous-simulink-models-4-638Utilities and project files

Within the MBD development process, there are both project and utility files(2).  Version control best practices map are influenced by the data and architectural best practices.  We will look at how releases are defined within this context.

What is a release?  When to release?

Within the Model-Based Design context, a release is defined as the set of data and models that

  1. Contains consistent interfaces: the interfaces between the parent and child models are correct and the data definitions are compatible(3)across all the models.
  2. Reached a significant milestone: the models and data capture a significant portion of the desired functionality(4).
  3. Is stable: the models and the data pass a significant(5) percentage of the tests associated with the model.

Keep in mind, releases should not be made on a temporal basis.  E.g. having a release every two weeks is not a good practice unless the conditions above are meet (at least condition 1 and 3.)  At the same time allowing a long time to go between releases can make it more difficult for developers to integrate into the final project.

Version control, models, data and the system architect

Best practices for model architecture recommend a multi-level (integration level/child level) systems.  Within this structure, the controls engineers are responsible for the checking in/out of their models.  Further, they are responsible for ensuring the data that is unique to their models is correct.

The role of the system architect is to ensure that the individual models integrate together.  They do this through the following tasks

  1. Validate that the model’s functional interfaces are compatible
  2. Validate that the use of global data is consistent across models(6)
  3. Running system level tests

In the case where there is a conflict between the functional interfaces or the use of global data, the system architect is responsible for arbitrating those conflicts.

releaseflow

Summary thoughts

Version control best practice for Model-Based Design or any software development is, in the end, dependent on communication between the team working on the software. The larger the team is the more the need for communication increases.  Both documentation of the intended process and linking development to requirements will improve this process. In the end, try not to be this group…

git

Footnotes

(1) For Model-Based Design, the “source files” could be C / C++ / VHDL / PLC or any other textual language.

(2) Utility files should also be placed under version control.

(3) For any given release the data may not be correct, e.g. having the final values as determined through requirements and testing; hence the term “compatible.”

(4) Note in some cases a release may be a ‘branch’ or experimental branch which may not be part of the final release of the software.

(5) The collection of the models and the data do not need to pass all tests, rather they should pass the tests that engineering judgment are considered significant at that point in time.  However, it should be noted that best practice is that as release advance towards the final release the number of tests passing should increase.

(6) Globally used data includes parameters and variables as well as structure definitions and enumerated data types.  As with all software development use of global data should be minimized.